!!ERA OF ULTRA HIGH SPEED OPTICAL FIBER !!
optical fiber research for the ultrahigh-speed, high-capacity era
Internet traffic is increasing exponentially with the accelerating spread of services such as social networking and video content services. The bandwidth of optical fiber communications systems that form the backbone for this communication is also being increased yearly. However, there are limits to the increase in bandwidth and speed that can be achieved with the single-mode optical fiber currently in use, and it is estimated that these limits will be reached in ten years. Therefore, a new transmission medium that overcomes these limitations will need to be created. We are focusing on ways to spatially extend the transmission area of optical fiber, which is one way to overcome these limitations. Current optical fibers transmit optical signals using a single mode, through a single core (transmission path) within a strand of quartz glass. However, optical fiber design and production technology is advancing because of the employment of complex cross sections such as hole structures, and digital transmission processing technology.
Fiber with multiple cores in a single strand of quartz glass, and multi-mode fiber capable of transmitting stable signals with multiple modes in a single core are presenting new possibilities for novel fiber structures with higher spatial multiplexing. We have continued to demonstrate the possibilities of multicore fiber with, for example, a successful 1-Pbit/s transmission over a single 12-core optical fiber of 52 km, which is a world record (ECOC (European Conference on Optical Communication) International Exhibition, Sept. 2012.
No comments:
Post a Comment